Vascular network remodeling via vessel cooption, regression and growth in tumors.
نویسندگان
چکیده
The transformation of the regular vasculature in normal tissue into a highly inhomogeneous tumor specific capillary network is described by a theoretical model incorporating tumor growth, vessel cooption, neo-vascularization, vessel collapse and cell death. Compartmentalization of the tumor into several regions differing in vessel density, diameter and in necrosis is observed for a wide range of parameters in agreement with the vessel morphology found in human melanoma. In accord with data for human melanoma the model predicts that microvascular density (MVD), regarded as an important diagnostic tool in cancer treatment, does not necessarily determine the tempo of tumor progression. Instead it is suggested that the MVD of the original tissue as well as the metabolic demand of the individual tumor cell plays the major role in the initial stages of tumor growth.
منابع مشابه
Metalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملIntegrative models of vascular remodeling during tumor growth
UNLABELLED Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature that ...
متن کاملPhysical determinants of vascular network remodeling during tumor growth Vascular network remodeling during tumor growth
The process in which a growing tumor transforms a hierarchically organized arterio-venous blood vessel network into a tumor specific vasculature is analyzed with a theoretical model. The physical determinants of this remodeling involve the morphological and hydrodynamic properties of the initial network, generation of new vessels (sprouting angiogenesis), vessel dilation (circumferential growth...
متن کاملVessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF.
In contrast with the prevailing view that most tumors and metastases begin as avascular masses, evidence is presented here that a subset of tumors instead initially grows by coopting existing host vessels. This coopted host vasculature does not immediately undergo angiogenesis to support the tumor but instead regresses, leading to a secondarily avascular tumor and massive tumor cell loss. Ultim...
متن کاملPotent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma.
Vascular endothelial growth factor (VEGF) plays a key role in human tumor angiogenesis. We compared the effects of inhibitors of VEGF with different specificities in a xenograft model of neuroblastoma. Cultured human neuroblastoma NGP-GFP cells were implanted intrarenally in nude mice. Three anti-VEGF agents were tested: an anti-human VEGF(165) RNA-based fluoropyrimidine aptamer; a monoclonal a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 241 4 شماره
صفحات -
تاریخ انتشار 2006